Une éolienne est un dispositif qui transforme l'énergie cinétique du vent en énergie mécanique puis, éventuellement, en énergie électrique. Les éoliennes produisant de l'électricité sont appelées aérogénérateurs, tandis que les éoliennes qui pompent directement de l'eau sont parfois dénommées pompes à eau actionnées par le vent ou éolienne Bollée.
On parle de parc éolien ou de ferme éolienne pour décrire les unités de productions groupées (installées à terre ou en mer).
Les États dans le monde où les champs éoliens sont les plus nombreux sont la Chine, l'Allemagne, l'Espagne, les États-Unis et le Danemark.
En France, les centrales éoliennes de production d'électricité sont en pleine expansion sur une grande partie du territoire. L'Aude et la Bretagne sont des zones géographiques pionnières en la matière.
L'ancêtre de l'éolienne est le moulin à vent. De nos jours, elle est encore utilisée comme lui couplée à une pompe à eau, généralement pour assécher des zones humides ou au contraire irriguer des zones sèches ou permettre l'élevage du bétail.
Article de Scientific American sur l'invention de Brush (1890).
En 1888, Charles F. Brush construit une grande éolienne pour alimenter sa maison en électricité, avec un stockage par batterie d'accumulateurs.
Article de Scientific American sur l'invention de Brush (1890).
La première éolienne « industrielle » génératrice d'électricité est mise au point par le Danois Poul La Cour en 1890, pour fabriquer de l'hydrogène par électrolyse. Dans les années suivantes, il crée l'éolienne Lykkegard, dont il vend soixante-douze exemplaires en 1908.
Éolienne Bollée de relevage d'eau sur son château d'eau, lieu-dit « Le Clône », Région de Pons - Ingénieur : E. Lebert, 1902 - Charente-Maritime, France.
Une éolienne expérimentale de 800 kVA fonctionne de 1955 à 1963 en France, à Nogent-le-Roi dans la Beauce. Elle avait été conçue par le Bureau d'études scientifiques et techniques de Lucien Romani et exploitée pour le compte d'EDF. Simultanément, deux éoliennes Neyrpic de 130 et 1 000 kW furent testées par EDF à Saint-Rémy-des-Landes (Manche)2. Il y eut également une éolienne raccordée au secteur sur les hauteurs d'Alger (Dély-Ibrahim) en 1957.
Cette technologie ayant été quelque peu délaissée par la suite, il faudra attendre les années 1970 et le premier choc pétrolier pour que le Danemark reprenne les installations d'éoliennes.
Les critères de choix d'une implantation éolienne dépendent de la taille, puissance et du nombre d'unités. Ils nécessitent la présence d'un vent régulier (cf. atlas éolien) et diverses conditions telles que : proximité d'un réseau électrique pour y raccorder les aérogénérateurs, absence de zones d'exclusion (dont périmètre de monuments historiques, sites classés…), terrain approprié, etc.
L’énergie éolienne reste actuellement l’énergie la plus propre. En effet, elle n’utilise que la force du vent, et n’utilise donc aucune ressource pouvant manquer au développement humain. Seuls le bruit et le possible manque de vent restent des données problématiques.
L’énergie produite par une éolienne
La production d’électricité des éoliennes dépend de la force du vent (de 10 à 90 km/h) et de la puissance des turbines (de 1 à 3 mégawatts en moyenne). Le vent qui actionne les pales est transformé en énergie grâce à l’alternateur. Les éoliennes étant reliées au réseau électrique, l’électricité produite peut donc être utilisée directement.
L’énergie éolienne : avantages et inconvénients
Les éoliennes ont leurs avantages et leurs inconvénients. Cela reste une énergie durable et propre, sans besoin de carburant et sans conséquence sur l’effet de serre. Cependant, elles ne permettent pas une indépendance énergétique et engendrent des nuisances sonores et visuelles. Pourtant, combinées à d’autres énergies renouvelables, elles peuvent compléter les énergies fossiles, par définition limitées et polluantes.
En France, un projet est considéré économiquement rentable si la vitesse moyenne annuelle du site est supérieure à 6 ou 7 m/s, soit 21 à 25 km/h. Cette rentabilité dépend de nombreux autres facteurs, dont les plus importants sont le coût de connexion au réseau et le coût des fondations (déterminant dans le cas d'un projet offshore) ainsi que les coûts de rachat de l'électricité.
Certains sites bien spécifiques augmentent la vitesse du vent et sont donc plus propices à une installation éolienne :
- L'accélération par effet géométrique : lorsque l'air s'engouffre entre deux obstacles comme deux montagnes ou deux grands bâtiments, il est accéléré. De même, lorsqu'il rencontre une colline, l'air est accéléré au niveau du sommet. Ces lieux sont donc très appropriés pour l'installation d'éoliennes. Ils sont cependant souvent de surface restreinte et peuvent être soumis à des turbulences si la forme des obstacles est irrégulière.
- La mer et les lacs sont aussi des emplacements de choix : il n'y a aucun obstacle au vent, et donc, même à basse altitude, les vents ont une vitesse plus importante et sont moins turbulents. La proximité d'une côte escarpée, en revanche, créera également des turbulences, usant prématurément certains composants mécaniques de l'éolienne.
De manière générale, il est toujours nécessaire d'effectuer une mesure de vent précise durant plusieurs mois, afin de s'assurer du potentiel éolien du site. Une étude précise permet ensuite d'extrapoler les données et de déterminer plus ou moins précisément les caractéristiques annuelles du vent (fréquence, vitesse...) et son évolution au cours des années.
D'autres critères sont pris en compte pour le choix du site.
- La nature du sol :
il doit être suffisamment résistant pour supporter les fondations de l'éolienne. Ce critère n'est pas déterminant car dans le cas d'un sol meuble, des pieux seront alors enfoncés sous les fondations de l'éolienne. Il existe aussi des éoliennes haubanées.
- L'accessibilité du site (virages, pente, passage de ponts) doit permettre le transport des gros éléments de l'éolienne (pales, tour, nacelle) et des grues nécessaires au montage. Cette contrainte peut limiter la puissance maximale installable par machine.
- La connexion au réseau électrique. Pour cela, les petites fermes d'éoliennes sont le plus souvent situées à proximité d'un poste de transformation haute tension afin de diminuer le coût de raccordement qui est directement fonction de la distance à ce poste. Pour les grosses fermes éoliennes, le réseau doit être en mesure de supporter l'énergie produite, et son renforcement est parfois nécessaire (renforcement ou création de poste de transformation). Le raccordement est plus coûteux dans le cas des projets offshores, mais les sites sont beaucoup plus ventés et les contraintes beaucoup plus faibles.
- Les éoliennes, selon leur taille, vitesse de rotation et emplacement, peuvent avoir un effet négatif sur les oiseaux ou chauve-souris (collision, dégradation de l'habitat, etc.) notamment si elles sont éclairées de nuit (cf. pollution lumineuse) ou disposées sur un corridor de migration aviaire. Birdlife International a fait un certain nombre de recommandations au Conseil de l'Europe à ce sujet : les réserves naturelles, les routes migratoires importantes (cols), etc. sont des lieux à éviter pour la sauvegarde des oiseaux. Des études sont également en cours pour mieux apprécier et réduire l'effet des éoliennes sur les chauve-souris.
- Même si les éoliennes de dernière génération sont relativement silencieuses, une étude des effets sonores sur les habitations est effectuée avant l'implantation des parcs éoliens. En fonction du résultat, cette implantation peut être modifiée afin de respecter la réglementation (émergence maximale de 5 dBA le jour et 3 dBA la nuit en France7). La distance entre les éoliennes et les habitations est généralement de 300 m. À environ 500 m, elles sont inaudibles ou très peu audibles et leur bruit est généralement couvert par le bruit du vent.
Sur la terre ferme
Dans une installation éolienne, il est préférable de placer la génératrice sur un mât à une hauteur de plus de 10 m jusqu'à environ 100 m, de façon à capter des vents plus forts et moins perturbés par la « rugosité » du sol. Dans les zones où le relief est très complexe, il est possible de doubler la quantité d'énergie produite en déplaçant l'installation de seulement quelques dizaines de mètres. Des mesures in situ et des modèles mathématiques permettent d'optimiser le positionnement d'éoliennes.
Pour les zones isolées et exposées aux cyclones
Pour ces zones, des éoliennes spéciales ont été conçues : elles sont haubanées pour pouvoir être couchées au sol en 45 minutes et sont de plus allégées. Elles peuvent aussi résister aux tremblements de terre les plus courants. Elles ne nécessitent pas de fondations aussi profondes que les autres et se transportent en pièces détachées. Par exemple, 7 éoliennes de 275 kW unitaires rendent Terre-de-Bas excédentaire en électricité, lui permettant d'en fournir à la Guadeloupe. De 1990 à 2007, 20 MW de puissance éolienne ont ainsi pu être installés en Guadeloupe. Toutes peuvent être couchées au sol et arrimées, comme ce fut le cas lors des passages des ouragans Ivan et José.
Mi-2007, il y avait environ 500 de ces éoliennes installées dans le monde, pour une puissance totale de 80 MW. La puissance des aérogénérateurs qui les équipent est passée de 30 kW à 275 kW en 10 ans.
Pleine mer
Éoliennes en pleine mer, près de Copenhague.
À la condition qu'elles soient implantées assez loin de la côte, les éoliennes en pleine mer (offshore) entraînent moins de conséquences sur le paysage terrestre. L'installation d'éoliennes en mer est beaucoup plus coûteuse qu'à terre : les mâts doivent être étudiés pour résister à la force des vagues et du courant, la protection contre la corrosion (particulièrement importante du fait des embruns) doit être renforcée, l'implantation en mer nécessite des engins spécialisés, le raccordement électrique implique des câbles sous-marins coûteux et fragiles, et les opérations de maintenance peuvent nécessiter de gros moyens. En revanche, une éolienne offshore peut fournir jusqu'à 6 MW (à comparer aux éoliennes terrestres limitées à 3 MW dans des sites bien ventés).
Dans les zones où la mer est peu profonde (par exemple au Danemark), il est assez simple de les installer, et elles ont un bon rendement. L'ensemble des éoliennes (en pleine mer ou terrestres) du Danemark produit, début 2006, 23 % de l'électricité nécessaire au pays8. Ce pays est un leader et précurseur dans la construction et l'utilisation de l'énergie éolienne, avec un projet lancé dans les années 1970. Aujourd'hui de grands parcs offshore sont en construction au large de l'Angleterre9 dans la baie de la Tamise, ainsi qu'en Écosse pour une puissance d'environ 4 000 MW au total.
Altitude
De nouvelles éoliennes sont capables de s'élever dans le ciel pour aller chercher les vents d'altitude, plus puissants et plus réguliers. Pour l'instant, au stade expérimental, elles sont de trois types :
-les ballons éoliens gonflés d'un mélange d'hélium et d'hydrogène emportent leur alternateur à une altitude de 300m et l'actionnent en tournant sur eux-mêmes. D'après leur constructeur, la puissance de chaque unité pourra atteindre 1MW.
- les voiles souples de type kite actionnent un alternateur au sol en s'élevant à une altitude de 800 à 1200m. Une fois l'altitude atteinte, la voile redescend. Chaque unité pourrait atteindre une puissance de 3MW.
- des structures s'élèvent à une altitude entre 5000 et 10000m où le vent fait tourner leurs hélices. La puissance de celles-ci pourrait atteindre les 100MW mais leur implantation nécessite des accords avec l'aviation pour éviter toute collision10.
Villes
En environnement urbain, où il est difficile d'obtenir de puissants flux d'air, de plus petits équipements peuvent être utilisés pour faire tourner des systèmes basse tension. Des éoliennes sur un toit fonctionnant dans un système d'énergie distribuée permettent d'alléger les problèmes d'acheminement de l'énergie et de pallier les pannes de courant. De petites installations telles que des routeurs wi-fi peuvent être alimentées par une éolienne portative qui recharge une petite batterie.
En ville, on pourra envisager l'implantation d'éoliennes à axe vertical, hélicoïdales, à effet Venturi ou un mélange de ces différentes techniques qui ont un rendement inférieur mais qui produisent de l'électricité même par vent faible et ne font pas de bruit. Depuis le printemps 2010, sont installées à titre expérimental sur les toits de la « Maison de l'air » à Paris, des éoliennes de petite taille capables de produire de l'électricité pour environ six familles. Elles ont une production moyenne continue d'environ 50 kWh12, soit une production annuelle de 15 000 kWh13.
Pour être plus parlant, on trouve classiquement ces éoliennes pour les applications suivantes :
- Micro-éoliennes : en général pour couvrir des besoins très limités et sites isolés (par exemple, des sites de pèche, des bateaux, des caravanes).
- Mini-éoliennes : essentiellement pour recharger des batteries sur des sites isolés du réseau, les plus puissantes peuvent servir pour l'alimentation domestique hors du réseau (maisons isolées).
- Eoliennes domestiques : elles balayent un spectre assez large allant de rotors de 3 à 10 m de diamètre. C'est typiquement le genre d'éoliennes proposées pour les particuliers.
- Eoliennes petites commerciales : elles sont typiquement conçues pour les petites entreprises, les fermes, ... mais il existe très peu de modèles produits dans cette gamme.
- Eoliennes moyennes commerciales : elles sont typiquement utilisées pour les applications commerciales dans des fermes, des usines, des entreprises voire des petits parcs éoliens.
- Eoliennes grands commerciales : ce sont les éoliennes que l'on trouve dans les parcs éoliens modernes, ce sont aussi les plus efficaces.
Modélisation
Schéma d'une éolienne de type aérogénérateur.
Une éolienne se compose des éléments suivants :
- Un mât permet de placer le rotor à une hauteur suffisante pour permettre son mouvement (nécessaire pour les éoliennes à axe horizontal) ou placer ce rotor à une hauteur lui permettant d'être entraîné par un vent plus fort et régulier qu'au niveau du sol. Le mât abrite généralement une partie des composants électriques et électroniques (modulateur, commande, multiplicateur, générateur, etc.).
- Une nacelle montée au sommet du mât, abritant les composants mécaniques, pneumatiques, certains composants électriques et électroniques, nécessaires au fonctionnement de la machine. La nacelle peut tourner pour orienter la machine dans la bonne direction.
- Un rotor, composé de plusieurs pales (en général trois) et du nez de l'éolienne, fixé à la nacelle. Le rotor est entraîné par l'énergie du vent, il est branché directement ou indirectement (via un système de boite de vitesse) au système mécanique qui utilisera l'énergie recueillie (pompe, générateur électrique...).
Axe horizontal
Une éolienne à axe horizontal est une hélice perpendiculaire au vent, montée sur un mât. La hauteur est généralement de 20 m pour les petites éoliennes, et supérieure au double de la longueur d'une pale pour les modèles de grande envergure.
Aujourd'hui les plus grandes éoliennes mesurent jusqu'à 180 m en bout de pale avec un moyeu à 120 m pour une puissance de 6 MW.
Des éléments annexes, comme par exemple un poste de livraison pour injecter l'énergie électrique produite au réseau électrique, complètent l'installation.
Une éolienne se modélise principalement à partir de ses caractéristiques aérodynamiques, mécaniques et électrotechniques. En pratique, on distingue aussi le « grand éolien », qui concerne les machines de plus de 250 kW, de l'éolien de moyenne puissance (entre 36 kW et 250 kW) et du petit éolien (inférieur à 36 kW).
Une des caractéristiques importantes des éoliennes est leur puissance électrique nominale. Ainsi faire référence à une éolienne de 2 MW (Mégawatt) signifie qu'elle est capable de fournir une puissance électrique maximale de 2 ∗ (10 exposant 6 watt). La vitesse de vent minimale pour atteindre cette puissance maximale est de l'ordre de 15 m/s, soit environ 55 km/h : en dessous de cette vitesse, l'éolienne produit moins d'énergie ; au-dessus, la production n'est pas plus importante et quand la vitesse du vent atteint le seuil de sécurité (souvent aux alentours de 25 à 35 m/s - 90 à 126 km/h) l'éolienne est bridée voire mise à l'arrêt.
La production réelle d'énergie électrique est donc fonction de la distribution statistique de la vitesse du vent du site.
Axe horizontal et pales horizontales
Plusieurs solutions d’éoliennes à axe vertical ont été expérimentées :
- Le type Darrieus repose sur l’effet de portance subi par un profil soumis à l’action d'un vent relatif ; effet qui s'exerce sur l'aile d'un avion. On distingue plusieurs déclinaisons autour de ce principe, depuis le simple rotor cylindrique - deux profils disposés de part et d'autre de l'axe - jusqu’au rotor parabolique où les profils sont recourbés en troposkine et fixés au sommet et à la base de l'axe vertical. Une éolienne de ce type a fonctionné au Québec (au Parc Éole) de 1983 à 1992. De grandes dimensions (110 m de haut), le prototype s'est détérioré lors d'un coup de vent, il était conçu pour fournir 4 MW avec un générateur au sol. Ces éoliennes de type Darrieus, de plus petites dimensions, sont à la base du projet Wind'It.
Le type Savonius, constitué schématiquement de deux ou plusieurs godets demi-cylindriques légèrement désaxés présente un grand nombre d'avantages. Outre son faible encombrement, qui permet d’intégrer l’éolienne aux bâtiments sans en dénaturer l’esthétique, il est peu bruyant. Il démarre à de faibles vitesses de vent et présente un couple élevé quoique variant de façon sinusoïdale au cours de la rotation. Il existe une variante, appelée Savonius hélicoïdal (ou twisted Savonius en anglais), qui permet d'augmenter le rendement en proposant de façon continue une surface d'accroche au vent. Au lieu d'avoir des des demi-cylindres verticaux, ceux-ci sont tordus de façon hélicoïdale autour de l'axe de rotation. Du fait de leur faible encombrement au sol, de leur bon rendement et du besoin d'un très faible vent, ils sont utilisés en ville sur les toits des maisons, sur des bateaux, comme le Hornblower Hybrid, ou encore dans la tour à énergie positive Pearl River Tower. Elles sont également adaptées à une position horizontale, l'axe de rotation restant face au vent et non dans le profil du vent, comme les éoliennes dites à axe horizontal.
Les éoliennes carénées
Certaines éoliennes sont munies d'éléments externes au rotor dont l'objectif est de concentrer le vent sur le celui-ci. On pense principalement aux éoliennes carénées où un conduit convergeant ou divergeant enveloppe le rotor de l'éolienne. Les design peuvent être des plus variés, voire des plus futuristes :
Certains de ces modèles présentent des puissances supérieures aux éoliennes traditionnelles non carénées. Il ne faut pas y voir pour autant un effet révolutionnaire. L'explication est relativement simple. Lorsque l'on définit la puissance instantanée du vent, il faut être vigilant à la définition de la surface rencontrée par l'éolienne que l'on utilise. Dans le cas d'une éolienne classique, il s'agit de la surface balayée par le rotor. Par contre, dans le cas de modèles carénés, il faut tenir compte de ces éléments supplémentaires extérieurs. Typiquement, il faut prendre la surface frontale de l'éolienne, carénage inclus. En gros, celui-ci augmente la puissance instantanée du vent en augmentant la surface exposée au vent. Les puissances plus élevées obtenues par ces éoliennes ne sont donc pas dues à un meilleur rendement, mais à une augmentation de la puissance du vent rencontrée, c'est-à-dire la source d'énergie.
Le carénage est-il pertinent?
La méthode n'est pas mauvaise, mais il faut savoir que c'est tout aussi simple d'augmenter la surface du rotor d'une éolienne classique pour qu'il soit équivalent à la surface au vent de l'éolienne carénée. En effet, dans le cas d'une éolienne carénée, ajouter cet élément externe a un certain coût. En outre, il faut pouvoir le maintenir par une structure et l'orienter correctement par rapport au vent. En ce qui nous concerne, nous pensons qu'il est plus simple d'augmenter la taille du rotor d'une éolienne traditionnelle.
Si vous êtes bricoleur et débrouillard faites un petit tour sur ce site ICI. Vous y trouverez de l'info pour la construction d'une éolienne à axe vertical.
Comment construire une petite éolienne ?
Beaucoup d'infos sur ces site :
http://www.sciences-buissonnieres.org/Construire-une-mini-eolienne.html
http://projet.eolienne.free.fr/
Sources :
http://fr.wikipedia.org
http://www.planete-energies.com
http://www.energieplus-lesite.be
On parle de parc éolien ou de ferme éolienne pour décrire les unités de productions groupées (installées à terre ou en mer).
Les États dans le monde où les champs éoliens sont les plus nombreux sont la Chine, l'Allemagne, l'Espagne, les États-Unis et le Danemark.
En France, les centrales éoliennes de production d'électricité sont en pleine expansion sur une grande partie du territoire. L'Aude et la Bretagne sont des zones géographiques pionnières en la matière.
L'ancêtre de l'éolienne est le moulin à vent. De nos jours, elle est encore utilisée comme lui couplée à une pompe à eau, généralement pour assécher des zones humides ou au contraire irriguer des zones sèches ou permettre l'élevage du bétail.
Article de Scientific American sur l'invention de Brush (1890).
En 1888, Charles F. Brush construit une grande éolienne pour alimenter sa maison en électricité, avec un stockage par batterie d'accumulateurs.
Article de Scientific American sur l'invention de Brush (1890).
La première éolienne « industrielle » génératrice d'électricité est mise au point par le Danois Poul La Cour en 1890, pour fabriquer de l'hydrogène par électrolyse. Dans les années suivantes, il crée l'éolienne Lykkegard, dont il vend soixante-douze exemplaires en 1908.
Éolienne Bollée de relevage d'eau sur son château d'eau, lieu-dit « Le Clône », Région de Pons - Ingénieur : E. Lebert, 1902 - Charente-Maritime, France.
Une éolienne expérimentale de 800 kVA fonctionne de 1955 à 1963 en France, à Nogent-le-Roi dans la Beauce. Elle avait été conçue par le Bureau d'études scientifiques et techniques de Lucien Romani et exploitée pour le compte d'EDF. Simultanément, deux éoliennes Neyrpic de 130 et 1 000 kW furent testées par EDF à Saint-Rémy-des-Landes (Manche)2. Il y eut également une éolienne raccordée au secteur sur les hauteurs d'Alger (Dély-Ibrahim) en 1957.
Cette technologie ayant été quelque peu délaissée par la suite, il faudra attendre les années 1970 et le premier choc pétrolier pour que le Danemark reprenne les installations d'éoliennes.
Les critères de choix d'une implantation éolienne dépendent de la taille, puissance et du nombre d'unités. Ils nécessitent la présence d'un vent régulier (cf. atlas éolien) et diverses conditions telles que : proximité d'un réseau électrique pour y raccorder les aérogénérateurs, absence de zones d'exclusion (dont périmètre de monuments historiques, sites classés…), terrain approprié, etc.
L’énergie éolienne reste actuellement l’énergie la plus propre. En effet, elle n’utilise que la force du vent, et n’utilise donc aucune ressource pouvant manquer au développement humain. Seuls le bruit et le possible manque de vent restent des données problématiques.
L’énergie produite par une éolienne
La production d’électricité des éoliennes dépend de la force du vent (de 10 à 90 km/h) et de la puissance des turbines (de 1 à 3 mégawatts en moyenne). Le vent qui actionne les pales est transformé en énergie grâce à l’alternateur. Les éoliennes étant reliées au réseau électrique, l’électricité produite peut donc être utilisée directement.
L’énergie éolienne : avantages et inconvénients
Les éoliennes ont leurs avantages et leurs inconvénients. Cela reste une énergie durable et propre, sans besoin de carburant et sans conséquence sur l’effet de serre. Cependant, elles ne permettent pas une indépendance énergétique et engendrent des nuisances sonores et visuelles. Pourtant, combinées à d’autres énergies renouvelables, elles peuvent compléter les énergies fossiles, par définition limitées et polluantes.
En France, un projet est considéré économiquement rentable si la vitesse moyenne annuelle du site est supérieure à 6 ou 7 m/s, soit 21 à 25 km/h. Cette rentabilité dépend de nombreux autres facteurs, dont les plus importants sont le coût de connexion au réseau et le coût des fondations (déterminant dans le cas d'un projet offshore) ainsi que les coûts de rachat de l'électricité.
Certains sites bien spécifiques augmentent la vitesse du vent et sont donc plus propices à une installation éolienne :
- L'accélération par effet géométrique : lorsque l'air s'engouffre entre deux obstacles comme deux montagnes ou deux grands bâtiments, il est accéléré. De même, lorsqu'il rencontre une colline, l'air est accéléré au niveau du sommet. Ces lieux sont donc très appropriés pour l'installation d'éoliennes. Ils sont cependant souvent de surface restreinte et peuvent être soumis à des turbulences si la forme des obstacles est irrégulière.
- La mer et les lacs sont aussi des emplacements de choix : il n'y a aucun obstacle au vent, et donc, même à basse altitude, les vents ont une vitesse plus importante et sont moins turbulents. La proximité d'une côte escarpée, en revanche, créera également des turbulences, usant prématurément certains composants mécaniques de l'éolienne.
De manière générale, il est toujours nécessaire d'effectuer une mesure de vent précise durant plusieurs mois, afin de s'assurer du potentiel éolien du site. Une étude précise permet ensuite d'extrapoler les données et de déterminer plus ou moins précisément les caractéristiques annuelles du vent (fréquence, vitesse...) et son évolution au cours des années.
D'autres critères sont pris en compte pour le choix du site.
- La nature du sol :
il doit être suffisamment résistant pour supporter les fondations de l'éolienne. Ce critère n'est pas déterminant car dans le cas d'un sol meuble, des pieux seront alors enfoncés sous les fondations de l'éolienne. Il existe aussi des éoliennes haubanées.
- L'accessibilité du site (virages, pente, passage de ponts) doit permettre le transport des gros éléments de l'éolienne (pales, tour, nacelle) et des grues nécessaires au montage. Cette contrainte peut limiter la puissance maximale installable par machine.
- La connexion au réseau électrique. Pour cela, les petites fermes d'éoliennes sont le plus souvent situées à proximité d'un poste de transformation haute tension afin de diminuer le coût de raccordement qui est directement fonction de la distance à ce poste. Pour les grosses fermes éoliennes, le réseau doit être en mesure de supporter l'énergie produite, et son renforcement est parfois nécessaire (renforcement ou création de poste de transformation). Le raccordement est plus coûteux dans le cas des projets offshores, mais les sites sont beaucoup plus ventés et les contraintes beaucoup plus faibles.
- Les éoliennes, selon leur taille, vitesse de rotation et emplacement, peuvent avoir un effet négatif sur les oiseaux ou chauve-souris (collision, dégradation de l'habitat, etc.) notamment si elles sont éclairées de nuit (cf. pollution lumineuse) ou disposées sur un corridor de migration aviaire. Birdlife International a fait un certain nombre de recommandations au Conseil de l'Europe à ce sujet : les réserves naturelles, les routes migratoires importantes (cols), etc. sont des lieux à éviter pour la sauvegarde des oiseaux. Des études sont également en cours pour mieux apprécier et réduire l'effet des éoliennes sur les chauve-souris.
- Même si les éoliennes de dernière génération sont relativement silencieuses, une étude des effets sonores sur les habitations est effectuée avant l'implantation des parcs éoliens. En fonction du résultat, cette implantation peut être modifiée afin de respecter la réglementation (émergence maximale de 5 dBA le jour et 3 dBA la nuit en France7). La distance entre les éoliennes et les habitations est généralement de 300 m. À environ 500 m, elles sont inaudibles ou très peu audibles et leur bruit est généralement couvert par le bruit du vent.
Sur la terre ferme
Dans une installation éolienne, il est préférable de placer la génératrice sur un mât à une hauteur de plus de 10 m jusqu'à environ 100 m, de façon à capter des vents plus forts et moins perturbés par la « rugosité » du sol. Dans les zones où le relief est très complexe, il est possible de doubler la quantité d'énergie produite en déplaçant l'installation de seulement quelques dizaines de mètres. Des mesures in situ et des modèles mathématiques permettent d'optimiser le positionnement d'éoliennes.
Pour les zones isolées et exposées aux cyclones
Pour ces zones, des éoliennes spéciales ont été conçues : elles sont haubanées pour pouvoir être couchées au sol en 45 minutes et sont de plus allégées. Elles peuvent aussi résister aux tremblements de terre les plus courants. Elles ne nécessitent pas de fondations aussi profondes que les autres et se transportent en pièces détachées. Par exemple, 7 éoliennes de 275 kW unitaires rendent Terre-de-Bas excédentaire en électricité, lui permettant d'en fournir à la Guadeloupe. De 1990 à 2007, 20 MW de puissance éolienne ont ainsi pu être installés en Guadeloupe. Toutes peuvent être couchées au sol et arrimées, comme ce fut le cas lors des passages des ouragans Ivan et José.
Mi-2007, il y avait environ 500 de ces éoliennes installées dans le monde, pour une puissance totale de 80 MW. La puissance des aérogénérateurs qui les équipent est passée de 30 kW à 275 kW en 10 ans.
Pleine mer
Éoliennes en pleine mer, près de Copenhague.
À la condition qu'elles soient implantées assez loin de la côte, les éoliennes en pleine mer (offshore) entraînent moins de conséquences sur le paysage terrestre. L'installation d'éoliennes en mer est beaucoup plus coûteuse qu'à terre : les mâts doivent être étudiés pour résister à la force des vagues et du courant, la protection contre la corrosion (particulièrement importante du fait des embruns) doit être renforcée, l'implantation en mer nécessite des engins spécialisés, le raccordement électrique implique des câbles sous-marins coûteux et fragiles, et les opérations de maintenance peuvent nécessiter de gros moyens. En revanche, une éolienne offshore peut fournir jusqu'à 6 MW (à comparer aux éoliennes terrestres limitées à 3 MW dans des sites bien ventés).
Dans les zones où la mer est peu profonde (par exemple au Danemark), il est assez simple de les installer, et elles ont un bon rendement. L'ensemble des éoliennes (en pleine mer ou terrestres) du Danemark produit, début 2006, 23 % de l'électricité nécessaire au pays8. Ce pays est un leader et précurseur dans la construction et l'utilisation de l'énergie éolienne, avec un projet lancé dans les années 1970. Aujourd'hui de grands parcs offshore sont en construction au large de l'Angleterre9 dans la baie de la Tamise, ainsi qu'en Écosse pour une puissance d'environ 4 000 MW au total.
Altitude
De nouvelles éoliennes sont capables de s'élever dans le ciel pour aller chercher les vents d'altitude, plus puissants et plus réguliers. Pour l'instant, au stade expérimental, elles sont de trois types :
-les ballons éoliens gonflés d'un mélange d'hélium et d'hydrogène emportent leur alternateur à une altitude de 300m et l'actionnent en tournant sur eux-mêmes. D'après leur constructeur, la puissance de chaque unité pourra atteindre 1MW.
- les voiles souples de type kite actionnent un alternateur au sol en s'élevant à une altitude de 800 à 1200m. Une fois l'altitude atteinte, la voile redescend. Chaque unité pourrait atteindre une puissance de 3MW.
- des structures s'élèvent à une altitude entre 5000 et 10000m où le vent fait tourner leurs hélices. La puissance de celles-ci pourrait atteindre les 100MW mais leur implantation nécessite des accords avec l'aviation pour éviter toute collision10.
Villes
En environnement urbain, où il est difficile d'obtenir de puissants flux d'air, de plus petits équipements peuvent être utilisés pour faire tourner des systèmes basse tension. Des éoliennes sur un toit fonctionnant dans un système d'énergie distribuée permettent d'alléger les problèmes d'acheminement de l'énergie et de pallier les pannes de courant. De petites installations telles que des routeurs wi-fi peuvent être alimentées par une éolienne portative qui recharge une petite batterie.
En ville, on pourra envisager l'implantation d'éoliennes à axe vertical, hélicoïdales, à effet Venturi ou un mélange de ces différentes techniques qui ont un rendement inférieur mais qui produisent de l'électricité même par vent faible et ne font pas de bruit. Depuis le printemps 2010, sont installées à titre expérimental sur les toits de la « Maison de l'air » à Paris, des éoliennes de petite taille capables de produire de l'électricité pour environ six familles. Elles ont une production moyenne continue d'environ 50 kWh12, soit une production annuelle de 15 000 kWh13.
Pour être plus parlant, on trouve classiquement ces éoliennes pour les applications suivantes :
- Micro-éoliennes : en général pour couvrir des besoins très limités et sites isolés (par exemple, des sites de pèche, des bateaux, des caravanes).
- Mini-éoliennes : essentiellement pour recharger des batteries sur des sites isolés du réseau, les plus puissantes peuvent servir pour l'alimentation domestique hors du réseau (maisons isolées).
- Eoliennes domestiques : elles balayent un spectre assez large allant de rotors de 3 à 10 m de diamètre. C'est typiquement le genre d'éoliennes proposées pour les particuliers.
- Eoliennes petites commerciales : elles sont typiquement conçues pour les petites entreprises, les fermes, ... mais il existe très peu de modèles produits dans cette gamme.
- Eoliennes moyennes commerciales : elles sont typiquement utilisées pour les applications commerciales dans des fermes, des usines, des entreprises voire des petits parcs éoliens.
- Eoliennes grands commerciales : ce sont les éoliennes que l'on trouve dans les parcs éoliens modernes, ce sont aussi les plus efficaces.
Modélisation
Schéma d'une éolienne de type aérogénérateur.
Une éolienne se compose des éléments suivants :
- Un mât permet de placer le rotor à une hauteur suffisante pour permettre son mouvement (nécessaire pour les éoliennes à axe horizontal) ou placer ce rotor à une hauteur lui permettant d'être entraîné par un vent plus fort et régulier qu'au niveau du sol. Le mât abrite généralement une partie des composants électriques et électroniques (modulateur, commande, multiplicateur, générateur, etc.).
- Une nacelle montée au sommet du mât, abritant les composants mécaniques, pneumatiques, certains composants électriques et électroniques, nécessaires au fonctionnement de la machine. La nacelle peut tourner pour orienter la machine dans la bonne direction.
- Un rotor, composé de plusieurs pales (en général trois) et du nez de l'éolienne, fixé à la nacelle. Le rotor est entraîné par l'énergie du vent, il est branché directement ou indirectement (via un système de boite de vitesse) au système mécanique qui utilisera l'énergie recueillie (pompe, générateur électrique...).
Axe horizontal
Une éolienne à axe horizontal est une hélice perpendiculaire au vent, montée sur un mât. La hauteur est généralement de 20 m pour les petites éoliennes, et supérieure au double de la longueur d'une pale pour les modèles de grande envergure.
Aujourd'hui les plus grandes éoliennes mesurent jusqu'à 180 m en bout de pale avec un moyeu à 120 m pour une puissance de 6 MW.
Des éléments annexes, comme par exemple un poste de livraison pour injecter l'énergie électrique produite au réseau électrique, complètent l'installation.
Une éolienne se modélise principalement à partir de ses caractéristiques aérodynamiques, mécaniques et électrotechniques. En pratique, on distingue aussi le « grand éolien », qui concerne les machines de plus de 250 kW, de l'éolien de moyenne puissance (entre 36 kW et 250 kW) et du petit éolien (inférieur à 36 kW).
Une des caractéristiques importantes des éoliennes est leur puissance électrique nominale. Ainsi faire référence à une éolienne de 2 MW (Mégawatt) signifie qu'elle est capable de fournir une puissance électrique maximale de 2 ∗ (10 exposant 6 watt). La vitesse de vent minimale pour atteindre cette puissance maximale est de l'ordre de 15 m/s, soit environ 55 km/h : en dessous de cette vitesse, l'éolienne produit moins d'énergie ; au-dessus, la production n'est pas plus importante et quand la vitesse du vent atteint le seuil de sécurité (souvent aux alentours de 25 à 35 m/s - 90 à 126 km/h) l'éolienne est bridée voire mise à l'arrêt.
La production réelle d'énergie électrique est donc fonction de la distribution statistique de la vitesse du vent du site.
Axe horizontal et pales horizontales
Plusieurs solutions d’éoliennes à axe vertical ont été expérimentées :
- Le type Darrieus repose sur l’effet de portance subi par un profil soumis à l’action d'un vent relatif ; effet qui s'exerce sur l'aile d'un avion. On distingue plusieurs déclinaisons autour de ce principe, depuis le simple rotor cylindrique - deux profils disposés de part et d'autre de l'axe - jusqu’au rotor parabolique où les profils sont recourbés en troposkine et fixés au sommet et à la base de l'axe vertical. Une éolienne de ce type a fonctionné au Québec (au Parc Éole) de 1983 à 1992. De grandes dimensions (110 m de haut), le prototype s'est détérioré lors d'un coup de vent, il était conçu pour fournir 4 MW avec un générateur au sol. Ces éoliennes de type Darrieus, de plus petites dimensions, sont à la base du projet Wind'It.
Le type Savonius, constitué schématiquement de deux ou plusieurs godets demi-cylindriques légèrement désaxés présente un grand nombre d'avantages. Outre son faible encombrement, qui permet d’intégrer l’éolienne aux bâtiments sans en dénaturer l’esthétique, il est peu bruyant. Il démarre à de faibles vitesses de vent et présente un couple élevé quoique variant de façon sinusoïdale au cours de la rotation. Il existe une variante, appelée Savonius hélicoïdal (ou twisted Savonius en anglais), qui permet d'augmenter le rendement en proposant de façon continue une surface d'accroche au vent. Au lieu d'avoir des des demi-cylindres verticaux, ceux-ci sont tordus de façon hélicoïdale autour de l'axe de rotation. Du fait de leur faible encombrement au sol, de leur bon rendement et du besoin d'un très faible vent, ils sont utilisés en ville sur les toits des maisons, sur des bateaux, comme le Hornblower Hybrid, ou encore dans la tour à énergie positive Pearl River Tower. Elles sont également adaptées à une position horizontale, l'axe de rotation restant face au vent et non dans le profil du vent, comme les éoliennes dites à axe horizontal.
Les éoliennes carénées
Certaines éoliennes sont munies d'éléments externes au rotor dont l'objectif est de concentrer le vent sur le celui-ci. On pense principalement aux éoliennes carénées où un conduit convergeant ou divergeant enveloppe le rotor de l'éolienne. Les design peuvent être des plus variés, voire des plus futuristes :
Certains de ces modèles présentent des puissances supérieures aux éoliennes traditionnelles non carénées. Il ne faut pas y voir pour autant un effet révolutionnaire. L'explication est relativement simple. Lorsque l'on définit la puissance instantanée du vent, il faut être vigilant à la définition de la surface rencontrée par l'éolienne que l'on utilise. Dans le cas d'une éolienne classique, il s'agit de la surface balayée par le rotor. Par contre, dans le cas de modèles carénés, il faut tenir compte de ces éléments supplémentaires extérieurs. Typiquement, il faut prendre la surface frontale de l'éolienne, carénage inclus. En gros, celui-ci augmente la puissance instantanée du vent en augmentant la surface exposée au vent. Les puissances plus élevées obtenues par ces éoliennes ne sont donc pas dues à un meilleur rendement, mais à une augmentation de la puissance du vent rencontrée, c'est-à-dire la source d'énergie.
Le carénage est-il pertinent?
La méthode n'est pas mauvaise, mais il faut savoir que c'est tout aussi simple d'augmenter la surface du rotor d'une éolienne classique pour qu'il soit équivalent à la surface au vent de l'éolienne carénée. En effet, dans le cas d'une éolienne carénée, ajouter cet élément externe a un certain coût. En outre, il faut pouvoir le maintenir par une structure et l'orienter correctement par rapport au vent. En ce qui nous concerne, nous pensons qu'il est plus simple d'augmenter la taille du rotor d'une éolienne traditionnelle.
Si vous êtes bricoleur et débrouillard faites un petit tour sur ce site ICI. Vous y trouverez de l'info pour la construction d'une éolienne à axe vertical.
Comment construire une petite éolienne ?
Beaucoup d'infos sur ces site :
http://www.sciences-buissonnieres.org/Construire-une-mini-eolienne.html
http://projet.eolienne.free.fr/
Sources :
http://fr.wikipedia.org
http://www.planete-energies.com
http://www.energieplus-lesite.be